CALCULUS REFRESHER:
INTEGRATION BY SUBSTITUTION

The following guideline summarizes the steps involved in u-substitution method:

INTEGRATION BY SUBSTITUTION

Choose a new variable u. Usually try choosing u to be some complicated part of the integrand whose derivative is also in the integrand.

Compute du.

Replace all terms in the original integrand with expressions involving u and du.

Evaluate the resulting u integrand. (If you can’t, you may need to try a different u or a different method of integration.)

Replace u with the corresponding expression in x.

Example: Evaluate $\int \frac{x}{x^2 + 2} \, dx$

We would choose $u = x^2 + 2$ since its derivative is $2x$ and we can write the entire expression in terms of u and du.

\[
\begin{align*}
 u &= x^2 + 2 \\
 du &= 2x \, dx \\
 \frac{du}{2} &= x \, dx
\end{align*}
\]

When substituting we should get the entire expression in terms of u and du.

\[
\begin{align*}
 \int \frac{x}{x^2 + 2} \, dx &= \int \frac{du}{u} \\
 &= \frac{1}{2} \ln |u| + C \\
 &= \frac{1}{2} \ln (x^2 + 2) + C
\end{align*}
\]

Now you try it!

Evaluate:

\[
\int x^3 \sqrt{x^4 + 5} \, dx
\]

Answer: $\frac{(x^4 + 5)^{3/2}}{6} + C$